Recognition of DNA Supercoil Geometry by Mycobacterium tuberculosis Gyrase

نویسندگان

  • Rachel E Ashley
  • Tim R Blower
  • James M Berger
  • Neil Osheroff
چکیده

Mycobacterium tuberculosis encodes only a single type II topoisomerase, gyrase. As a result, this enzyme likely carries out the cellular functions normally performed by canonical gyrase and topoisomerase IV, both in front of and behind the replication fork. In addition, it is the sole target for quinolone antibacterials in this species. Because quinolone-induced DNA strand breaks generated on positively supercoiled DNA ahead of replication forks and transcription complexes are most likely to result in permanent genomic damage, the actions of M. tuberculosis gyrase on positively supercoiled DNA were investigated. Results indicate that the enzyme acts rapidly on overwound DNA and removes positive supercoils much faster than it introduces negative supercoils into relaxed DNA. Canonical gyrase and topoisomerase IV distinguish supercoil handedness differently during the DNA cleavage reaction: while gyrase maintains lower levels of cleavage complexes on overwound DNA, topoisomerase IV maintains similar levels of cleavage complexes on both over- and underwound substrates. M. tuberculosis gyrase maintained lower levels of cleavage complexes on positively supercoiled DNA in the absence and presence of quinolone-based drugs. By retaining this important feature of canonical gyrase, the dual function M. tuberculosis type II enzyme remains a safe enzyme to act in front of replication forks and transcription complexes. Finally, the N-terminal gate region of the enzyme appears to be necessary to distinguish supercoil handedness during DNA cleavage, suggesting that the capture of the transport segment may influence how gyrase maintains cleavage complexes on substrates with different topological states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of DNA gyrase operon in Mycobacterium smegmatis: a distinct mechanism of relaxation stimulated transcription.

BACKGROUND The topological state of DNA is a result of the diverse influences of various topoisomerases present in the cell. Amongst these, DNA gyrase is the only enzyme that is capable of supercoiling DNA. In all the eubacterial cells tested so far, DNA gyrase has proved to be essential for survival. We have earlier cloned gyr genes from Mycobacterium smegmatis. Unlike the situation in Escheri...

متن کامل

Monoclonal antibodies to mycobacterial DNA gyrase A inhibit DNA supercoiling activity.

DNA gyrase is an essential type II topoisomerase found in bacteria. We have previously characterized DNA gyrase from Mycobacterium tuberculosis and Mycobacterium smegmatis. In this study, several monoclonal antibodies were generated against the gyrase A subunit (GyrA) of M. smegmatis. Three, MsGyrA:C3, MsGyrA:H11 and MsGyrA:E9, were further analyzed for their interaction with the enzyme. The mo...

متن کامل

Mycobacterium tuberculosis DNA gyrase possesses two functional GyrA-boxes.

In contrast with most bacteria which possess two type II topoisomerases (topoisomerase IV and DNA gyrase), Mycobacterium tuberculosis possesses only one, DNA gyrase, which is functionally a hybrid enzyme. Functional differences between the two type IIA topoisomerases are thought to be specified by a CTD (C-terminal DNA-binding domain), which controls DNA recognition. To explore the molecular me...

متن کامل

Glutamate racemase from Mycobacterium tuberculosis inhibits DNA gyrase by affecting its DNA-binding

Glutamate racemase (MurI) catalyses the conversion of l-glutamate to d-glutamate, an important component of the bacterial cell wall. MurI from Escherichia coli inhibits DNA gyrase in presence of the peptidoglycan precursor. Amongst the two-glutamate racemases found in Bacillus subtilis, only one inhibits gyrase, in absence of the precursor. Mycobacterium tuberculosis has a single gene encoding ...

متن کامل

Structural Insights into the Quinolone Resistance Mechanism of Mycobacterium tuberculosis DNA Gyrase

Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which emerges in extensively drug resistan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2017